Determining the Aquatic Toxicity of Deicing Materials

- Laboratory-based study to evaluate the aquatic toxicity of liquid deicing chemicals
- Acute and "chronic" tests
- Test species
 - Ceriodaphnia dubia
 - Water flea, zooplankton
 - Pimephales promelas
 - Fish, fathead minnow
 - Selenastrum capricornutum
 - Algae

The Laboratory

resourceful. naturally.

Study Design

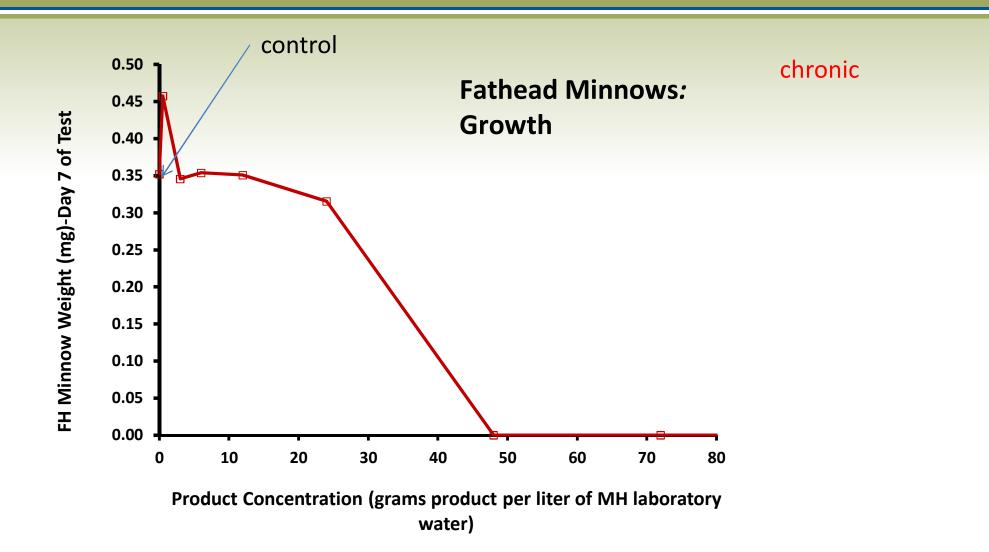
- Acute and chronic toxic effects
- Acute
 - 48 to 96 hour test
 - Measure survival
- Chronic
 - 7 day test (C. dubia, fathead)
 - 4 day test (algae)
 - Measure growth, reproduction, and survival
- Measureable outcome-endpoints

Study Design endpoints

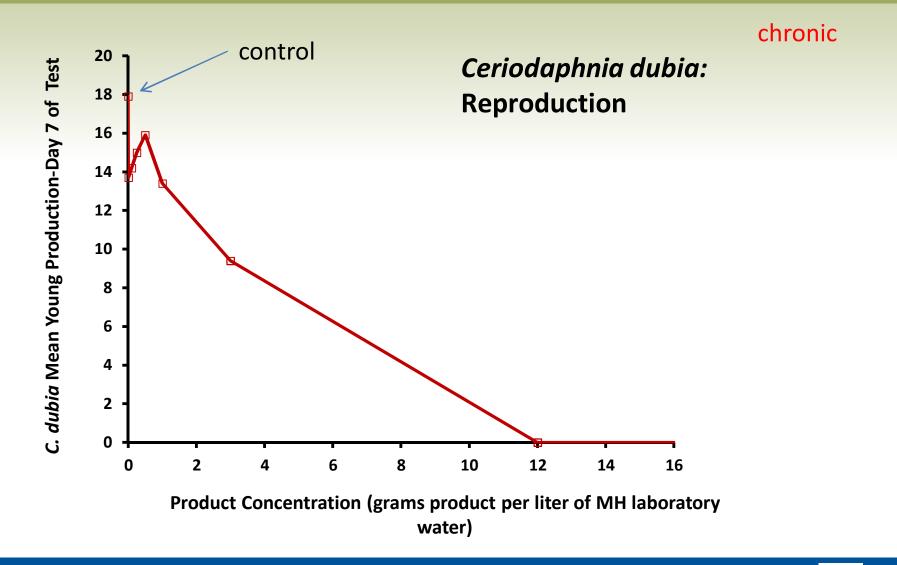
- LC50
 - Concentration at which there is a 50% reduction in survival...
- IC25
 - Concentration at which there is a 25% reduction in young production, growth...
- IC50
 - Concentration at which there is a 50% reduction in young production, growth...
- NOEC

Highest concentration at which there is no toxicity...

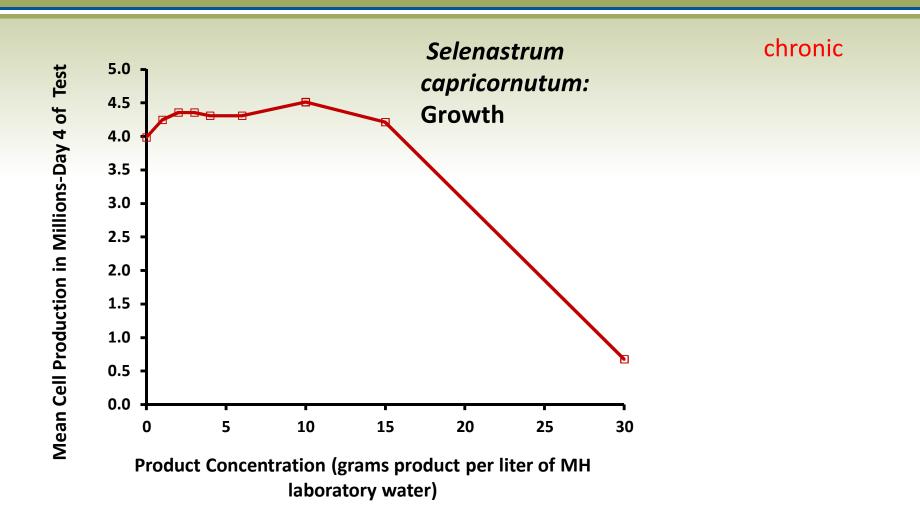
... compared to the controls

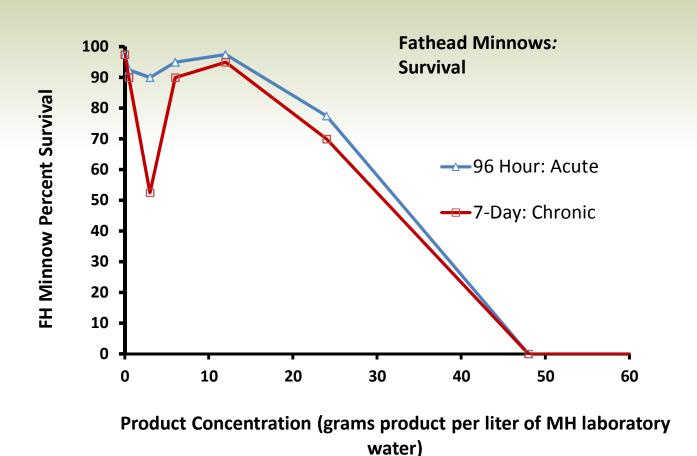


Study Design

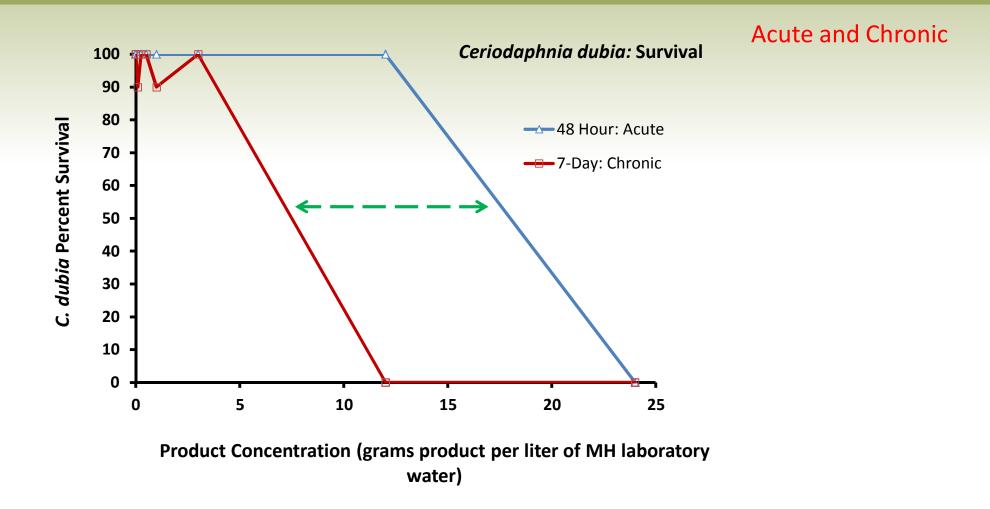

- Dose-response
 - Add a range of volumes of deicing chemical to water
 - Get a range of responses from the test organisms
 - Result is a curve showing how the organism responds

Products Evaluated


- 1. Watershed Cl inhibitor with sodium chloride salt brine
- 2. Beet 55 inhibitor with sodium chloride salt brine
- 3. FreezGard CI Plus inhibitor-magnesium chloride
- 4. Meltdown Apex inhibitor-magnesium chloride
- 5. Road Guard Plus inhibitor-calcium chloride
- 6. Boost inhibitor-calcium chloride
- 7. CF-7 inhibitor-potassium acetate
- 8. Apogee-glycerol



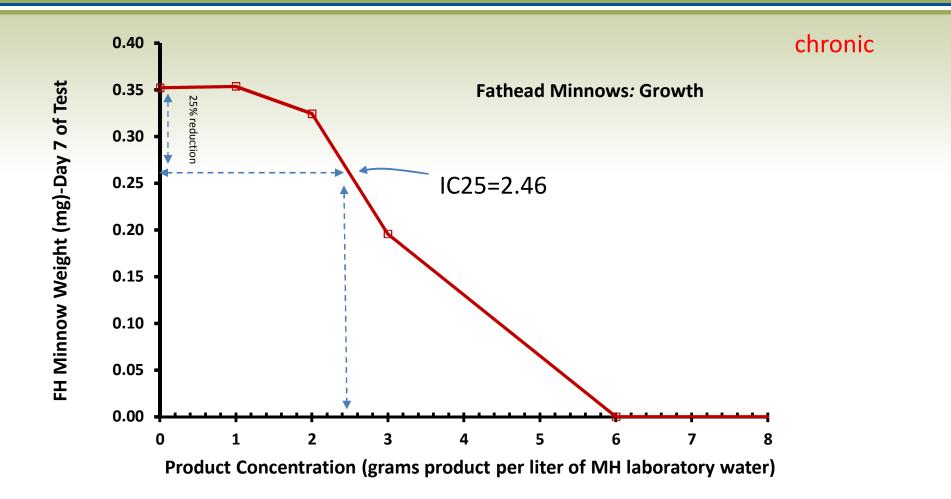
Slide 9

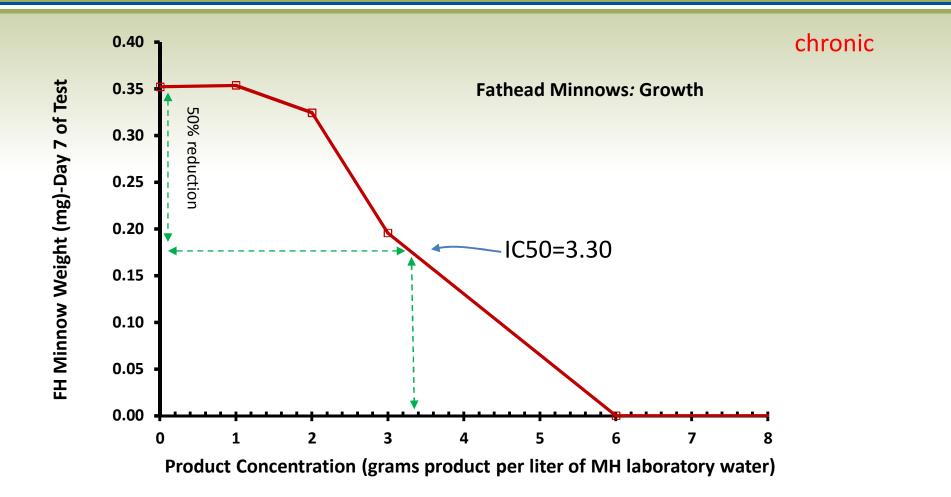


Acute and Chronic

Slide 10

resourceful. naturally.





Slide 11

Endpoints example RoadGard Plus

Endpoints example RoadGard Plus

Endpoint Tables mass based

Ceriodaphnia dubia

	Toxicological Endpoint as Product (grams product/liter of diluent)							
Product	Acute NOEC (survival)	Acute LC50 (survival)	Chronic NOEC (survival)	Chronic LC50 (survival)	Chronic NOEC (young production)	Chronic IC25 (young production)	Chronic IC50 (young production)	
Watershed Cl: Inhibitor + Salt (NaCl)	12.0	17.0	3.00	4.81	1.00	0.990	3.43	

Mass of Product/Volume of Diluent = Mass of liquid product diluted in runoff and the receiving water body

Endpoint Tables volume based

Ceriodaphnia dubia

	Toxicological Endpoint as Product (milliliters of product/liter of diluent) ⁽¹⁾						
Product	Acute NOEC (survival)	Acute LC50 (survival)	Chronic NOEC (survival)	Chronic LC50 (survival)	Chronic NOEC (young production)	Chronic IC25 (young production)	Chronic IC50 (young production)
Watershed Cl : Inhibitor + Salt (NaCl)	9.4	13.3	2.3	3.8	0.8	0.8	2.7

Volume of Product/Volume of Diluent = volume of liquid product diluted in runoff and the receiving water body

For the practitioner!

Endpoint Tables salt content based

Ceriodaphnia dubia

			Toxicological Endpoint as Primary Salt (milligrams salt/liter of diluent) ¹					luent)1	
Product	Chemical Used for Endpoint Calculation	Stock Concentration (grams salt / liter of product) ²	Acute NOEC (survival)	Acute LC50 (survival)	Chronic NOEC (survival)	Chronic LC50 (survival)	(young	Chronic IC25 (young production)	Chronic IC50 (young production)
Watershed Cl : Inhibitor + Salt (NaCl)	Na + Cl	288	2705	3826	676	1084	225	223	773
Beet 55: Inhibitor + Salt (NaCl)	Na + Cl	224	1760	2782	17.6	102	1.76	12.4	64.8

Mass of salt per volume of product/volume of diluent = mass of salt diluted in runoff and the receiving water body

To normalize products based upon salt mass per unit volume and to promote comparison

Which inhibitor is more chronically toxic?

Ranking

Ranking by Total Product Mass

Product	Relative Toxicological Rank	
Watershed Cl: Inhibitor + Salt		
(NaCl)	1	
Boost (CaCl2)	2	
Road Guard Plus (CaCl2)	3	
Beet 55: Inhibitor + Salt (NaCl)	4	
FreezGard CI Plus (MgCl2)	5	
Apogee (Glycerol)	6	
Meltdown Apex (MgCl2)	7	
CF-7 (K-Acetate)	8	

LUAIC 200

Ranking by Salt Mass

Product	Relative Toxicological Rank
Watershed Cl: Inhibitor + Salt (NaCl)	1
Boost (CaCl2)	2
Road Guard Plus (CaCl2)	3
FreezGard CI Plus (MgCl2)	4
Meltdown Apex (MgCl2)	5
Beet 55: Inhibitor + Salt (NaCl)	6
CF-7 (K-Acetate)	7

Ranking by Salt Type

For this current study (from most to least toxic):

K-Acetate > MgCl₂ > CaCl₂ > NaCl

Salt only toxicity from the literature:

K-Acetate > MgCl₂ > CaCl₂ = NaCl

Other Observations dissolved oxygen

Dissolved Oxygen Measured During The Test

					Selenastrum
	С.	dubia	Fathead	Minnow	Capricornutum
			Dissolved Oxy	gen (mg/L)	
	At Acute	At Chronic	At Acute	At Chronic	
Product	LC50	IC50	LC50	IC50	At IC50
Watershed Cl : Inhibitor + Salt					
(NaCl)	7.91	8.09	5.1	6.54	9.49
Beet 55: Inhibitor + Salt (NaCl)	4.26	7.69	1.70	6.24	9.64
FreezGard CI Plus (MgCl ₂)	7.96	8.04	4.70	7.09	9.53
Meltdown Apex (MgCl ₂)	8.07	8.19	7.20	7.38	8.14
Road Guard Plus (CaCl ₂)	7.24	7.74	4.24	4.60	8.16
Boost (CaCl ₂)	5.54	7.33	3.28	3.97	9.01
CF-7 (K-Acetate)	7.29	7.98	4.64	6.50	9.05
Apogee (Glycerol)	7.16	7.70	4.54	5.58	9.78

Reminder: Daily Renewals

Dissolved oxygen effects still possible in the receiving water body

Other Observations species sensitivity to products

<u>Acute Toxicity:</u> more sensitive.....less sensitive fathead minnow > *Ceriodaphnia dubia*

(96 hour test)

(48 hour test)

<u>Chronic Toxicity:</u> <u>more sensitive</u>.....less sensitive *Ceriodaphnia dubia >>> Selenastrum > fathead minnow*

(7 day test)

(4 day test)

(7 day test)

Conclusions

- Testing provided high-quality data set for a selected number of liquid deicing products
- Testing results can be used to make estimates of potential toxicological impact on receiving waters, recognizing that:
 - Receiving water may have different chemistry than the laboratory water used in this study
 - Some of the product may be retained in soils and this will need to be considered in any impact assessment.
- Acute or chronic data use
 - Depends upon typical storm length for given region of country
 - Depends upon the receiving water body, e.g.
 - Large river = acute
 - Lake = chronic

Conclusions: potential future work

- Temperature
 - Need to determine if these products are more or less toxic at low temperatures
- Longer term dissolved oxygen loss and effects on toxicity
- Product retention and decay
- Study effects with exposure periods representative of storm events

